
The complete
guide to
User-Agents
What they are, how to
read them, and how to
use them

Go to User AgentsGo to contents2 UC

Contents

What is a User-Agent?� 3

How User-Agent Strings Serve Us� 7

OpenRTB and the User-Agent Header� 10

User-Agent String Evolution� 11

Making Use of the User-Agent Header� 13

Benefits of User-Agent Analysis� 16

Approaches to User-Agent Detection� 19

Examples of Common User-Agents� 23

Conclusion� 35

Go to User AgentsGo to contents3 UC

What is a User-Agent?

A User-Agent (also known as UA
string) is an alphanumeric string
that identifies the ‘agent’ or program
making a request to a web server for
an asset such as a document, image
or web page. It is a standard part of
web architecture and is passed by all
web requests in the HTTP headers.

The User-Agent string is very useful
because it gives you information
about the software and hardware
running on the device making the
request. You can make important
decisions on how to handle web
traffic based on the User-Agent
string, ranging from simple
segmentation and redirection, to
more complex content adaptation
and device targeting decisions.

Even more information, such as
screen resolution, CPU and storage
capacity can be returned when the
User-Agent string is mapped to an
additional set of data, returned in
real-time.

The User-Agent string is one element
in the set of HTTP Headers, which
form the handshaking process
between the browser and the web
server. These consist of request

headers and response headers.
Other request headers which are
used to understand the user device
or context include the Accept Header,
which identifies the language and
locale setting of the browser. This
allows the web server to know the
end user’s preferred language, so if
content is available in this language
it can be served by default.

Anatomy of a User-
Agent

Use of the User-Agent string is
specified in the original HTTP
standard, RFC 1945.

The User-Agent string has been
part of the HTTP standard since
the very first version, and has been
retained in every update since, right
up to HTTP/2. These standards make
recommendations on what should
be in the User-Agent string as well as
describing its purpose”

The “User-Agent” header field
contains information about the
User-Agent originating the request,
which is often used by servers to
help identify the scope of reported

http://tools.ietf.org/html/rfc1945#section-10.15

Go to User AgentsGo to contents4 UC

interoperability problems, to work
around or tailor responses to avoid
particular User-Agent limitations,
and for analytics regarding browser
or operating system use.
A User-Agent SHOULD send a User-
Agent field in each request unless
specifically configured not to
do so.

How it is constructed is
defined to a degree:
	� User-Agent = product *(RWS (

product / comment))

Product tokens are explained in more
detail as:

	� The User-Agent field-value
consists of one or more product
identifiers, each followed by zero
or more comments (Section 3.2
of [RFC7230]), which together
identify the User-Agent software
and its significant subproducts.
By convention, the product
identifiers are listed in decreasing
order of their significance for
identifying the User-Agent
software.

Each product identifier consists of a
name and optional version.

Product tokens are used to allow
communicating applications to
identify themselves by software

name and version. Most fields using
product tokens also allow sub-
products which form a significant
part of the application to be listed,
separated by white space.

Each product token includes a
product name and its version
separated by a “/” sign with some
optional information in brackets.
The tokens are typically listed
by significance, however this is
completely left up to the software
publisher. Tokens can be used to
send browser-specific information
and to acquire device specific
information from the device’s ROM,
such as the model ID, operating
system and its version, etc.

Here are two examples of User-
Agents used by a Samsung Galaxy
S22 and a macOS computer using
the Safari browser:

	� Mozilla/5.0 (Linux; Android
12; SM-S9010 Build/
QP1A.190711.020; wv)
AppleWebKit/537.36 (KHTML,
like Gecko) Version/4.0
Chrome/80.0.3987.119 Mobile
Safari/537.36

	� Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_15_7)
AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/16.2
Safari/605.1.15

Go to User AgentsGo to contents5 UC

The Web & Apps
Landscape

At the birth of the web in the early
1990s the only viable web clients
ran on personal computers. Mobile
devices followed around a decade
later. Today you can access the
web on a wide variety of hardware
types including smart watches,
VR headsets, smart speakers,
games consoles, televisions and
refrigerators. Adding to the richness
of the web is the fact that a lot of
web pages are now accessed from
applications (“apps”) that are not
web browsers as such, at least
not in the normal sense—think of
messaging clients, social networking
apps and so on.

This richness has led to an explosion
in the information that can be
conveyed in the User-Agent string.
Consider the example User-Agent
string mentioned in RFC1945, the
specification for the first version of
the web:

	� CERN-LineMode/2.15
libwww/2.17b3

This says that the browser in question
is CERN’s LineMode browser, built on
a library called libwww. This was an
adequately descriptive User-Agent
string for the day—there was simply
less to be said as there were only a

few web browsers in existence and
just one device type that could run
them—the PC.

But in today’s world wide web, plied
by all manner of device types,
running thousands of different web-
capable applications, it’s no longer
sufficiently descriptive to enable the
use cases of the User-Agent string as
envisaged by Tim Berners Lee:

•	 for statistical purposes
•	 tracing of protocol violations
•	 automated recognition of User-

Agents for the sake of tailoring
responses to avoid particular
User-Agent limitations

A typical User-Agent string from a
mobile device today might look like
this:

	 �Mozilla/5.0 (iPhone; CPU
iPhone OS 14_5 like Mac OS
X) AppleWebKit/605.1.15
(KHTML, like Gecko)
Mobile/15E148
MicroMessenger/7.0.18
(0x17001220) NetType/4G
Language/en

This is the WeChat “super app”
running on an iPhone. The level of
detail in this User-Agent string is
a reflection of the fact that there
are far more considerations for
publishers on today’s web than there
were in 1990. To enable a given URL

Go to User AgentsGo to contents6 UC

to work on a vast range of device
types, screen sizes, input methods
and connectivity levels sometimes
requires content tailoring, and that
tailoring needs to be informed
by data.

User-Agent
Client Hints

Computer scientist Andrew
Tanenbaum once quipped that “The
nice thing about standards is that
you have so many to choose from.“

Unfortunately we are now in this
position with the User-Agent header.
Enshrined in open standards since
the early nineties, the User-Agent
header is now being buffeted by
change in the form of a proposal
from Google. The proposal is called
User-Agent Client Hints (UA-CH)
and is the biggest change to the
User-Agent header since the dawn
of the web.

UA-CH is a proposal to reduce the
amount of information conveyed by
the User-Agent string and instead
utilize of a set of optional Client Hints

headers, the most detailed of which
need to be explicitly requested by
the web server in order to be sent
by the browser rather than in every
request, as is the case with the UA.
 The stated purpose of the UA-CH
proposal is to reduce the prevalence
of passive fingerprinting. DeviceAtlas
has publicly questioned the
evidence for the problem solved
by the proposal, pointing to a
lack of any concrete evidence for
widespread passive fingerprinting
on the web. Despite posing this
question in 2021 there hasn’t yet
been a credible answer, two
years later.

Status

UA-CH are now in place in Chrome
releases since early 2023 (Chrome
110), Microsoft Edge and some other
Chromium-based browsers. By
contrast, Apple, Mozilla and Brave
have not adopted the proposal.
The net result is that developers
now have to contend with two very
different approaches to identifying
clients on the web and the situation
is unlikely to improve any time soon.

https://github.com/WICG/ua-client-hints/issues/215

Go to User AgentsGo to contents7 UC

How User-Agent Strings
Serve Us

The venerable User-Agent string
is used to improve experiences on
the internet every day but it is done
so seamlessly that nobody notices
anymore. The following sections list
some of the ways that User-Agent
strings are used every day on the
Internet:

Content adaptation

Content adaptation is a widely
practised technique to improve
user experiences. Most major
websites offer different experiences
depending on the device used to visit
them. Sometimes the differences are
subtle, sometimes they are major.
There are several use cases for this
but all require that the server needs
to be aware at HTML serving time of
the type of device in use.

Device-specific pages

Many websites serve different
content for mobile and desktop
devices. Serving different HTML and
resources allows for much richer
device adaptation than is possible
with responsive design, which

focuses on cosmetic aspects.
As an example, the number
of products displayed on an
e-Commerce site might vary
depending on whether the user is
interacting with a phone, tablet or
desktop device.

For these cases, serving device-
specific sites to users can be helpful.

Low-powered devices

Some sites serve different content
to low-powered devices that cannot
handle CPU-intensive tasks, large
video or high resolution images. Such
content adaptation typically uses
the device model information that’s
integrated in the User-Agent string
for this purpose.

Browser bug
workarounds

Many webapps work around device
and browser limitations or bugs by
tailoring the code as needed.

Go to User AgentsGo to contents8 UC

Browser feature
tailoring

It’s possible for websites to tailor
features to particular browsers, and
this can be achieved by maintaining
a list of available features for
particular browsers and versions. In
some cases this technique is used
to improve performance by only
sending browser polyfills
when required.

Operating system
integration

Some websites change links to OS-
specific ones such as Android intent
links to improve the user experience.

Download of
appropriate binary
executables

Websites often propose the right
binary to the user by default. The
right binary executable for the
current user depends on a few
factors such as the operating
system, its version, its bitness,
as well as the CPU architecture.

Vulnerability checking

Some environments will chose to
inspect browser and operating
system versions to protect users
when there are known vulnerabilities.
The User-Agent string allows this
check to be performed in a web
environment.

Debugging

One of the original intents of the
User-Agent string was for debugging
purposes. The User-Agent header
allows problematic devices or
browsers to be identified in server log
files thus allowing the problem to be
addressed.

Spam filtering & bot
detection

About half of all web traffic is driven
by non-human users. Many websites
will chose to control this traffic by
utilizing rules on their web servers.
As an example, known-bad bots can
be blocked from accessing content.

https://developer.chrome.com/multidevice/android/intents
https://developer.chrome.com/multidevice/android/intents
https://deviceatlas.com/blog/introduction-bot-traffic-part-one-our-bot-analytics-series

Go to User AgentsGo to contents9 UC

User login notification

Many web applications now notify
the user when their credentials are
used to log in on a new device. This
device and browser information
helps the user to decide if the login
attempt matches one they made
themselves.

Advertising

Advertising is the de facto
micropayments model for the web,
also enabling many apps to be
made available in free versions. In a
world where privacy regulations are
constraining the targeting ability of
advertisers, knowledge of a user’s
device can help ensure that ads
are more relevant. As a very simple
example, the User-Agent string can
be used to ensure that only apps
that run on a particular device are
advertised on it, or that accessories
are only advertised to devices that
are relevant.

Device inventory
maintenance

A challenge for IT operations
departments, where BYOD policies
are in place, is to ensure that staff
devices are up to date. A simple
means to do this is through parsing
of User-Agent strings presented by
employee devices when connecting
to network resources. This can
be done in advance of a login to
allow for blocking of devices with
unpatched operating systems or out
of date browsers.

Subscriber whitelist
maintenance

Subscribers to commercial services
may wish to access them from
multiple devices. By identifying the
devices used by the subscriber, a
whitelist of user-approved devices
which are authorised to access the
services can be maintained. Devices
from outside of the whitelist could
be subject to additional security
verification (2FA for example)
in order to authenticate the
subscriber fully.

Go to User AgentsGo to contents10 UC

OpenRTB and the
User-Agent header

Knowledge of the user’s device has
always been part of the OpenRTB
specification. The standard expressly
includes a ua attribute in bid
requests to allow informed decisions
to be made about the device in
question. This allows for ads to be
targeted based on the device a user
is holding.

The IAB recently published an
updated version of the OpenRTB
specification. The updated
document, a revision to version 2.6 of
the specification, now addresses the
landscape change brought about
by Google’s decision to progressively
reduce the content of the User-Agent
string in Chrome in favour of User-
Agent Client Hints (UA-CH).

This update provides welcome
clarity for the OpenRTB ecosystem
since Google’s change would have
threatened to weaken the ability of
the OpenRTB protocol to support
targeting by device type and other
non-PII characteristics.

With the newest update, the OpenRTB
specification now explicitly defines

how to populate the ua attribute and
the sua attribute in the case where a
browser supports User-Agent Client
Hints:

	 “�For backwards compatibility,

exchanges are recommended
to always populate ua with
the User-Agent string, when
available from the end user’s
device, even if an alternative
representation, such as the
User-Agent Client-Hints,
is available and is used to
populate sua. No inferred or
approximated User-Agents
are expected in this field.

	� If a client supports User-
Agent Client Hints, and sua
field is present, bidders are
recommended to rely on sua for
detecting device type, browser
type and version and other
purposes that rely on the User-
Agent information, and ignore
ua field. This is because the ua
may contain a frozen or reduced
User-Agent string.”

https://iabtechlab.com/standards/openrtb/
https://iabtechlab.com/standards/openrtb/
https://github.com/WICG/ua-client-hints
https://github.com/WICG/ua-client-hints

Go to User AgentsGo to contents11 UC

User-Agent String Evolution

Privacy Concerns

User-Agent strings are no longer the
privacy issue that they’re sometimes
made out to be. There are two
primary reasons for this:
1.	 The User-Agent string isn’t as

useful for fingerprinting as it
used to be

2.	 Fewer entities in the ecosystem
now have access to the User-
Agent string

Fingerprinting

In the past there were legitimate
concerns that the browser User-
Agent string was a significant source
of entropy for fingerprinting users.
Here is an example User-Agent string
from around ten years ago:

	� Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1;
SV1; Tablet PC 1.7; .NET CLR
1.0.3705; .NET CLR 1.1.4322;
InfoPath.1; Alexa Toolbar;
.NET CLR 2.0.50727)

In this case Internet Explorer 6 is
not only saying that there are two
browser plugins installed (InfoPath
and the Alexa Toolbar), it also lists
three separate versions of the .NET

common language runtime with
very granular version numbers. This
is a highly specific set of information
that, in combination with IP address,
would make it very likely that a user
is individually targettable.

Here are some more examples from
the past:

•	 Mozilla/4.0 (compatible;
MSIE 7.0; Windows NT 6.0;
SLCC1; .NET CLR 2.0.50727;
Media Center PC 5.0; .NET
CLR 3.0.04506; .NET CLR
1.1.4322; InfoPath.2; Zango
10.3.75.0)

•	 Opera/9.10 (Windows NT 5.1;
U; MEGAUPLOAD 1.0; pl)

Note the Zango and Megaupload
plugins and their version numbers..

This level of detail simply isn’t present
in mainstream browsers anymore.
Let’s consider three of the most
common browsers today:

•	 Chrome
Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/112.0.0.0
Safari/537.36

Go to User AgentsGo to contents12 UC

•	 Safari
Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_15_7)
AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/16.4.1
Safari/605.1.15

•	 Edge
Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/112.0.0.0
Safari/537.36
Edg/112.0.1722.68

These modern User-Agent strings tell
us very little apart from the browser
version, operating system name and
version. Firefox reveals even less (it
omits the least significant version
number):

	� Mozilla/5.0 (Macintosh;
Intel Mac OS X 10.15;
rv:109.0) Gecko/20100101
Firefox/113.0

Given that most modern browsers
and operating systems are
automatically kept up to date, these
version numbers will be meaningless
for fingerprinting purposes.

Access to the User-
Agent string

For the User-Agent string to be used
for fingerprinting, one needs access
to it. Since 2010, when the Firesheep
plugin exposed just how much
information was freely available from
sniffing session cookies on LAN traffic,
the web has rapidly moved to HTTPS
by default. Google now reports that
over 90% of page loads in Chrome
happen over HTTPS.

For the User-Agent string in
particular, this means that no
network intermediaries have access
to the information that a person’s
browser emits. To all intents and
purposes, this information is now
impossible to obtain as a man-in-
the-middle. This limits access to the
User-Agent string to websites that
the user chooses to connect with,
and any linked third-party origins. In
their role as network intermediaries,
the LAN, ISP and mobile operator
no longer have access to the User-
Agent string. This change alone
greatly limits the scope for passive
fingerprinting on the web.

https://blog.chromium.org/2021/07/increasing-https-adoption.html
https://blog.chromium.org/2021/07/increasing-https-adoption.html

Go to User AgentsGo to contents13 UC

Making use of the
User-Agent header

How does User-Agent
parsing work in device
detection?

From a technical point of view,
examining the User-Agent is not
particularly complex and can be
done using navigator.userAgent in
JavaScript or the HTTP User-Agent
header field made available by web
servers.

Many companies use a regular
expression (“regex”) approach to
analyze User-Agents which relies
on pattern or string matching to
find keywords that can identify
the underlying device. A typical
regex approach would look for the
presence of ‘iPhone’ or ‘Android’ in
the User-Agent, however this can
result in data inaccuracies. Being
able to differentiate between Android
tablets and phones is an obvious
weakness and the presence of the
iPhone token may be just about as
useful as the Mozilla token.

As User-Agent strings do not
conform to any standard pattern,

this technique is prone to failure
and is not future-proof. Regex
rules would constantly need to be
updated as new devices, browsers
and operating systems are released,
as well as running endless tests to
confirm whether the solution is still
working correctly. At some point,
this becomes a costly maintenance
job, and, over time, a real risk that
a significant proportion of traffic is
being mis-detected.

Accurately parsing User-Agents is
one problem, but the real difficulty
is being able to stay on top of the
constantly shifting sands of the
device, browser and OS market.
This becomes even more difficult
with millions of permutations when
language and locale, or sideloaded
browsers are added to the mix. More
recently, User-Agent Client Hints
have necessitated looking at many
additional HTTP headers to identify
a device where previously just the
User-Agent header would have
sufficed.

This is where having a good device
detection solution really pays off.

Go to User AgentsGo to contents14 UC

There are two prerequisites for
device detection:

• �Header lookups happen extremely
quickly

• �Device identification is highly
accurate

This involves accurately mapping
all possible User-Agent strings for
a particular device and having
an API that can accurately and
quickly return the information

while also being flexible enough to
accommodate new variants as they
arise.

The reason that this can be so
difficult to execute correctly is
because there are millions of
variants already in existence with
new User-Agents being created all
the time. Every new device, browser,
browser version, OS or app can
create a new and previously unseen
User-Agent.

In this regard, not all approaches
to device detection are created
equal—some will have inaccurate
data or return false positives—
you may think you have a correct
result, but an inferior solution may
return default values or fallback
devices for unknown User-Agents.
Some approaches can also max
out server resources because of
unsophisticated and messy APIs
and codebases.

DeviceAtlas uses a set of Patricia
trie data structure to determine the
properties of a device in the quickest
and most efficient way. This is the
reason why major companies rely on
established solutions that are built
on proven and patented technology.

Go to User AgentsGo to contents15 UC

Patented Technology
In the device intelligence world,
speed is everything but accuracy
should never be sacrificed.

Our patented algorithm allows
DeviceAtlas to achieve both speed
and accuracy without any tradeoffs
by combining some uniquely useful
characteristics:

• It is extremely fast
• It allows for perfect accuracy
• �It has a very light memory and

data file footprint

Whether you’re running a real time
bidding (RTB) platform where the
entire auction process takes place
in 100 milliseconds, or an analytics
platform churning through trillions
of requests, or a website running on
a lowly VPS, speed is consistently
needed.

Our algorithm allows for the
extremely high speeds afforded by a
Patricia trie, but with the
flexibility to accommodate the
reality that it’s not possible to have
prior knowledge of all devices on the
market.

In computer science, trie structures
are often used in search-like use
cases such as spell checkers
and predictive text—despite their
apparent complexity, this approach
works exceedingly well. To this
end, we have incorporated some
improvements into the traditional
Patricia trie.

Firstly, the approach considers
the User-Agent string as groups
of tokens, allowing us to skip
insignificant characters. Secondly,
our approach does not rely on the
traditional left-to-right ordering of
the User-Agent string to achieve
perfect results.

https://deviceatlas.com/blog/why-deviceatlas-both-fast-and-accurate
https://deviceatlas.com/blog/deviceatlas-api-giant-performance-tiny-footprint
https://deviceatlas.com/blog/deviceatlas-api-giant-performance-tiny-footprint

Go to User AgentsGo to contents16 UC

Benefits of User-Agent
analysis
Increased Conversions
- Content Optimization
A well implemented User-Agent
analysis strategy allows you to adapt
content dynamically to ensure that
each visitor has an optimal viewing
experience. Whether the visiting
device is a smartphone, tablet,
desktop, a high end or low end
device, getting the first impression
right is critically important.

Another factor in optimizing for
increased conversions is page load/
weight. By parsing a User-Agent, you
can learn how big the screen is, for
example, and send an appropriately

sized image to the device. This will
cut down on a potential customer’s
wait time and can also save data if
they are on a metered connection.

Getting the most out of User-Agent
analysis helps you become fully
aware of the changing
patterns of device usage, which can
inform content, design and business
decisions.

For some examples of this content in
action, view our article on adaptive
web design in action, as well as a
recent analysis we did on adaptive
vs responsive website design in
eCommerce.

MT6580 2665

Top five chipsets used...
... account for 28%
of all chipsets used!

2000

1615

1218

1065

MT6572

MT6582

MT6535

MT6537

Top five chipsets

A
ll other chipsets

http://adaptive web design in action
http://adaptive web design in action
https://deviceatlas.com/blog/responsive-adaptive-design-analysis
https://deviceatlas.com/blog/responsive-adaptive-design-analysis
https://deviceatlas.com/blog/responsive-adaptive-design-analysis

Go to User AgentsGo to contents17 UC

Reporting/Analytics

After the fact reporting and analysis
of User-Agent visits can also inform
future decisions and strategies—
this new informationΩcan shed light
on the most granular of scenarios.

Your existing reporting may only
focus on mobile/desktop/tablet, but
adding hundreds of additional data
points with User-Agents will provide
a much closer look at individual
devices. This level of granularity can
offer key insights such as friction
associated with specific devices
navigating through your website.

Enhanced Ad-
targeting

In advertising, as a rule of thumb, it’s
important to ensure that your ads

reach the right people at the right
time. Device detection is an essential
ingredient in making this possible,
and analyzing the User-Agent of
each device allows you to ensure
you reach the desired audience.
Up to date device information can
power campaign management
interfaces so that users can create
campaigns based on a wide range
of device characteristics such as
device type (phone, tablet, set top
box and 47 other device types),
device tier (entry-level to premium
tier), year released and so on.

For anyone involved in the online
advertising space, buyers and sellers
both, ad fraud is clearly a concern.
DeviceAtlas is used by major players
in the ad-tech space, such as
The Trade Desk, Yahoo, SpotX and
Magnite.

Almost
10%
of all
phones
have
a screen
size of..

56% of all hardware
used is considered low tier

Low tier

Mid tier

5
inches

Go to User AgentsGo to contents18 UC

Bot Detection

We all realize the benefits of search
bots from Google and Bing, but being
able to distinguish between those
and malicious bots accessing your
content means that you can avoid
wasting resources intended for a
human audience. Treating good and
bad bots differently once identified
by their User-Agent allows you to
benefit from good bots, while also
reducing the potential resource drain
caused by the malicious variety.

Based on analysis of the HTTP
headers, good bots can be identified
since they self-declare in the User-
Agent string. However, some User
Agents seek to mask their identity by
using a generic or different User-
Agent string. In order to identify these
scenarios, it is necessary to look at
additional signals such as those
obtained via a JavaScript library.

Go to User AgentsGo to contents19 UC

Approaches to User-Agent
parsing

There are many approaches to
availing of the information available
from the User-Agent header, and the
following sections discuss some of
the options available:

Building a regex device
detection solution

In some cases it is feasible to build a
device detection solution based on
regex, which is essentially a pattern
matching scheme utilizing a number
of well-known mobile browser User-
Agent string snippets. The use cases
of this approach might include
websites where simple mobile or
tablet redirection is sufficient, or
where highly precise detection of
properties is not really important.

A regex-based device detection can
be built with different programming
languages. As referenced below in
the case of Adjust, there are some
limitations that you should be aware
of before exploring this option further:

Accuracy – Regex User-Agent
matching can work well in the
general sense, but it will inevitably fail
to recognize some devices correctly,
e.g. certain Android tablets. While
it’s possible to add more specific
patterns to the regex to match edge-
cases by matching specific model
numbers, this has the disadvantage
of reducing the performance of the
detection, and will have knock-on
performance implications for your
site.

Performance – Regular expressions
can be slow to execute, particularly
for complicated patterns. If
performance is a key factor, then this
is not the way to go.

Maintenance – The regex patterns
will need to be updated regularly to
keep up to date with new devices
that may not be already covered.

Device capabilities – If you need
anything more than simple traffic
routing (mobile/tablet/desktop)

Go to User AgentsGo to contents20 UC

such as knowing device properties
like screen size, memory limit, HTML5
support, then the regex solution may
not be suitable.

We spoke with one of our customers,
Adjust, in January 2023 about their
decision to move away from in-
house User-Agent parsing using a
regex solution:

	�

“We were writing a lot of it
[code] on our own, which
meant that we had a long and
perpetually outdated list of
Regexes to look at the User-
Agents and try to make sense
of them. [...] We had a very
tough time distinguishing
between Android tablets
and phones, which is kind of
important for us because we
provide this data to clients.”

https://www.adjust.com/

Go to User AgentsGo to contents21 UC

Locally deployed and
cloud-based device
detection

Choosing a commercial device
detection solution might be a better
choice than a home-grown solution,
especially for larger, high-trafficked
websites that implement content
adaptations use cases such as
advertising and analytics where very
high throughputs and low latency
are required.

There are two options for third-party
device detection solution:

1. Cloud-based
2. Locally-deployed

With cloud-based detection, data
is delivered on demand for specific
device headers submitted via a
Cloud API. To integrate a cloud-
based detection on your website
you would need to download the

API and insert a code snippet into
your website’s code. The third-party
service then adds the capability of
identifying and handling traffic from
any device category to your website
via an up-to-date database of all
the latest devices.

Cloud-based device detection is
easier to implement and maintain
than a home-grown solution due
to the fact that no manual updates
are required. An up-to-date, third-
party device database also means a
higher level of accuracy.

One example of this type of solution
is the DeviceAtlas cloud-based
detection service which is based on
API calls to the DeviceAtlas servers.
You can check implementation
examples in different coding
environments here.

The basic version of DeviceAtlas
cloud-based detection is available
to try for free.

Optimized content

User Agent

Device info

Look up via cloud

https://deviceatlas.com/signup-cloud?utm_source=content&utm_medium=whitepaper&utm_campaign=guide+to+UAs

Go to User AgentsGo to contents22 UC

Locally-installed
device detection

Some of the largest websites
preclude dependency on any third-
party services, and thus deploy only
locally installed device detection
solutions.

To implement locally-installed
detection you must download a
device data file from your solution

provider and deploy their API into
your environment. It is best to set
automatic, script-based downloads
and updates of the file to ensure that
the most up-to-date data is in use.

In DeviceAtlas’s case, the device
data is available in a highly
compressed JSON format offering
extremely fast lookups with a
minimal footprint, and can be
downloaded manually or obtained
via an automated script.

Optimized content

User Agent

Device profile

Look up via API

Examples of common
User-Agents

There are millions of combinations
given which User-Agents can
change depending on the software
and hardware. For example, a
Chrome browser on an iPhone 14
will introduce itself using a different
User-Agent than a Safari browser on
the same phone.

Every device type, including phones,
tablets, desktops, may come with
its own User-Agent, making it

possible to detect for any purpose.
Interestingly, bots and crawlers also
come with their own unique User-
Agents. Below is a list of User-Agents
for different device types that can be
detected.

If you would like to learn more about
any of these devices, just copy and
paste the string into our User-Agent
testing tool and you’ll find all the
properties of that detected device.

23 Go to User AgentsGo to contents UC

https://deviceatlas.com/device-data/user-agent-tester
https://deviceatlas.com/device-data/user-agent-tester

Android Mobile User-Agents� 25

iPhone User-Agents� 26

Desktop User-Agents� 27

Set Top Box User-Agents� 28

Bots and Crawlers User-Agents� 29

Game Consoles User-Agents� 30

Tablet User-Agents� 31

E-Readers User-Agents� 33

Index of common
User-Agents

24 Go to User AgentsGo to contents UC

Go to User AgentsGo to contents25 UC

Android Mobile
User-Agents

Device User-Agent

Samsung Galaxy S23
Mozilla/5.0 (Linux; Android 13; SM-S911B) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/104.0.0.0 Mobile Safari/537.36
Dalvik/2.1.0 (Linux; U; Android 13; SM-S911B Build/TP1A.220624.014)

Samsung Galaxy S21 Ultra 5G

Mozilla/5.0 (Linux; Android 11; SM-G998U) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/88.0.4324.93 Mobile Safari/537.36
Dalvik/2.1.0 (Linux; U; Android 12; SM-G998U Build/
SP1A.210812.016)

Samsung Galaxy Z Flip4

Mozilla/5.0 (Linux; Android 12; SM-F721U Build/SP2A.220305.013;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/103.0.5060.71 Mobile Safari/537.36
Mozilla/5.0 (Linux; Android 12; SM-F721U) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/103.0.0.0 Mobile Safari/537.36

Samsung Galaxy Note 20

Mozilla/5.0 (Linux; Android 10; SM-N980F Build/QP1A.190711.020;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/80.0.3987.119 Mobile Safari/537.36
Dalvik/2.1.0 (Linux; U; Android 10; SM-N980F Build/QP1A.190711.020)

Google Pixel 7

Mozilla/5.0 (Linux; Android 13; Pixel 7 Build/TD1A.220804.009.
A2; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/103.0.5060.71 Mobile Safari/537.36
Dalvik/2.1.0 (Linux; U; Android 13; Pixel 7 Build/TD1A.220804.009.
A2)

Sony Xperia 5 IV

Mozilla/5.0 (Linux; Android 12; XQ-CQ62 Build/64.0.H.11.9;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/107.0.5304.141 Mobile Safari/537.36
Mozilla/5.0 (Linux; Android 12; XQ-CQ62) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/107.0.0.0 Mobile Safari/537.36

HTC Desire 22 pro

Mozilla/5.0 (Linux; Android 12; HTC Desire 22 pro Build/
SKQ1.220201.001; wv) AppleWebKit/537.36 (KHTML, like Gecko)
Version/4.0 Chrome/103.0.5060.129 Mobile Safari/537.36
Mozilla/5.0 (Linux; Android 12; HTC Desire 22 pro)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0
Mobile Safari/537.36

Go to User AgentsGo to contents26 UC

iPhone
User-Agents

Device User-Agent

iPhone 14 Pro Max
Mozilla/5.0 (iPhone15,3; U; CPU iPhone OS 16_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/20A362 Safari/602.1

iPhone 14 Pro
Mozilla/5.0 (iPhone15,2; U; CPU iPhone OS 16_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/20A362 Safari/602.1

iPhone 14 Plus
Mozilla/5.0 (iPhone14,8; U; CPU iPhone OS 16_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/20A362 Safari/602.1

iPhone 14
Mozilla/5.0 (iPhone14,7; U; CPU iPhone OS 16_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/20A362 Safari/602.1

iPhone 13 Pro Max
Mozilla/5.0 (iPhone14,3; U; CPU iPhone OS 15_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/19A346 Safari/602.1

iPhone 12
Mozilla/5.0 (iPhone13,2; U; CPU iPhone OS 14_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/15E148 Safari/602.1

iPhone 12 Mini
Mozilla/5.0 (iPhone13,1; U; CPU iPhone OS 14_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/15E148 Safari/602.1

iPhone 11
Mozilla/5.0 (iPhone12,1; U; CPU iPhone OS 13_0 like Mac OS
X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/15E148 Safari/602.1

Below are some examples of
User-Agent strings used by the most
recent iPhone devices. As Apple does
not pass much info through the
User-Agent, version numbers don’t
allow us to differentiate between
iPhone models.

However, with the DeviceAtlas client-
side component component, these
User-Agents can be classified and
the correct device model returned.

https://deviceatlas.com/blog/how-to-use-client-side-component-for-device-detection
https://deviceatlas.com/blog/how-to-use-client-side-component-for-device-detection

Go to User AgentsGo to contents27 UC

Desktop
User-Agents

Device User-Agent

Windows 10-based PC
using Edge browser

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko)
Chrome/42.0.2311.135 Safari/537.36 Edge/12.246

Chrome OS-based laptop using
Chrome browser (Chromebook)

Mozilla/5.0 (X11; CrOS x86_64 8172.45.0) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/51.0.2704.64 Safari/537.36

Mac OS X-based computer using
a Safari browser

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2)
AppleWebKit/601.3.9 (KHTML, like Gecko) Version/9.0.2
Safari/601.3.9

Windows 7-based PC using a
Chrome browser

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/47.0.2526.111 Safari/537.36

Linux-based PC using a Firefox
browser

Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) Gecko/20100101
Firefox/15.0.1

Go to User AgentsGo to contents28 UC

Set Top Box
User-Agents

Device User-Agent

Apple TV (2022) AppleTV14,1/16.1

Chromecast with Google TV (4K)

Mozilla/5.0 (X11; Linux armv7l) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/43.0.2357.90 Safari/537.36 CrKey/1.17.46278
Mozilla/5.0 (X11; Linux aarch64) AppleWebKit/537.36 (KHTML, like
Gecko)
Chrome/90.0.4430.225 Safari/537.36 CrKey/1.56.500000
DeviceType/Chromecast

Minix NEO X39
Mozilla/5.0 (Linux; Android 7.1.2; NEO_X39) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/80.0.3987.99 Safari/537.36

Amazon Fire TV Stick 4K Max
Mozilla/5.0 (Linux; Android 9; AFTKA) AppleWebKit/537.36
(KHTML, like Gecko) Silk/92.2.11 like Chrome/92.0.4515.159
Safari/537.36

Amazon Fire TV Cube
Mozilla/5.0 (Linux; Android 9; AFTR) AppleWebKit/537.36 (KHTML,
like Gecko) Silk/98.6.10 like Chrome/98.0.4758.136 Safari/537.36

Chromecast
Mozilla/5.0 (CrKey armv7l 1.5.16041) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/31.0.1650.0 Safari/537.36

Roku Ultra Roku 4640X/DVP-7.70 (297.70E04154A)

Minix NEO X5
Mozilla/5.0 (Linux; U; Android 4.2.2; he-il; NEO-X5-116A Build/
JDQ39) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0
Safari/534.30

Amazon 4K Fire TV
Mozilla/5.0 (Linux; Android 5.1; AFTS Build/LMY47O)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/41.99900.2250.0242 Safari/537.36

Google Nexus Player Dalvik/2.1.0 (Linux; U; Android 6.0.1; Nexus Player Build/MMB29T)

Apple TV 5th Gen 4K AppleTV6,2/11.1

Apple TV 4th Gen AppleTV5,3/9.1.1

Go to User AgentsGo to contents29 UC

Bots and Crawlers
User-Agents

Device User-Agent

Google Bot
Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.
com/bot.html)

BIng Bot
Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/
bingbot.htm)

Yahoo! Bot
Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/
help/us/ysearch/slurp)

For a more in-depth list of User-Agent strings
related to web crawlers and bots, check out
this article.

https://deviceatlas.com/blog/most-active-bots-and-crawlers-web
https://deviceatlas.com/blog/most-active-bots-and-crawlers-web

Go to User AgentsGo to contents30 UC

Game Consoles
User-Agents

Device User-Agent

Sony Playstation 5
Mozilla/5.0 (PlayStation; PlayStation 5/2.26)
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0
Safari/605.1.15

Xbox Series X
Mozilla/5.0 (Windows NT 10.0; Win64; x64; Xbox; Xbox Series X)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.82
Safari/537.36 Edge/20.02

Nintendo Wii U
Mozilla/5.0 (Nintendo WiiU) AppleWebKit/536.30 (KHTML, like
Gecko) NX/3.0.4.2.12
NintendoBrowser/4.3.1.11264.US

Xbox One S
Mozilla/5.0 (Windows NT 10.0; Win64; x64; XBOX_ONE_ED)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.79
Safari/537.36 Edge/14.14393

Xbox One
Mozilla/5.0 (Windows Phone 10.0; Android 4.2.1; Xbox; Xbox One)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2486.0
Mobile Safari/537.36 Edge/13.10586

Playstation 4
Mozilla/5.0 (PlayStation 4 3.11) AppleWebKit/537.73 (KHTML, like
Gecko)

Playstation Vita
Mozilla/5.0 (PlayStation Vita 3.61) AppleWebKit/537.73 (KHTML,
like Gecko) Silk/3.2

Nintendo 3DS Mozilla/5.0 (Nintendo 3DS; U; ; en) Version/1.7412.EU

Go to User AgentsGo to contents31 UC

Tablet
User-Agents

Device User-Agent

iPad Air (2020)
Mozilla/5.0 (iPad13,1; iPad; U; CPU OS 14 like Mac OS X)
AppleWebKit/602.2.14 (KHTML, like Gecko) Mobile/16E227

Samsung Galaxy Tab S6 5G
Mozilla/5.0 (Linux; Android 9; SAMSUNG SM-T866N)
AppleWebKit/537.36 (KHTML, like Gecko) SamsungBrowser/11.1
Chrome/75.0.3770.143 Safari/537.36

Samsung Galaxy Tab A7 10.4
Mozilla/5.0 (Linux; Android 12; SM-T509) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36

Sony Xperia Z4 Tablet LTE
Mozilla/5.0 (Linux; Android 7.0; SGP771 Build/32.3.A.2.33;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/58.0.3029.83 Safari/537.36

Fire HD 10 Plus
Mozilla/5.0 (Linux; Android 9; KFTRPWI) AppleWebKit/537.36
(KHTML, like Gecko) Silk/92.2.11 like Chrome/92.0.4515.159
Safari/537.36

Lenovo Tab P11
Dalvik/2.1.0 (Linux; U; Android 10; Lenovo TB-J606F Build/
QKQ1.200730.002)

iPad Pro 12.9 (2022)
Mozilla/5.0 (iPad14,5; U; CPU OS 16_1 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.3
Mobile/20B82 Safari/602.1

Google Pixel C
Mozilla/5.0 (Linux; Android 7.0; Pixel C Build/NRD90M;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/52.0.2743.98 Safari/537.36

Sony Xperia Z4 Tablet
Mozilla/5.0 (Linux; Android 6.0.1; SGP771 Build/32.2.A.0.253;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/52.0.2743.98 Safari/537.36

Nvidia Shield Tablet K1

Mozilla/5.0 (Linux; Android 6.0.1; SHIELD Tablet K1 Build/MRA58K;
wv) AppleWebKit/537.36
(KHTML, like Gecko) Version/4.0 Chrome/55.0.2883.91
Safari/537.36

Samsung Galaxy Tab S3
Mozilla/5.0 (Linux; Android 7.0; SM-T827R4 Build/NRD90M)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.116
Safari/537.36

Go to User AgentsGo to contents32 UC

Tablet
User-Agents (Continued)

Device User-Agent

Samsung Galaxy Tab A
Mozilla/5.0 (Linux; Android 5.0.2; SAMSUNG SM-T550
Build/LRX22G) AppleWebKit/537.36 (KHTML, like Gecko)
SamsungBrowser/3.3 Chrome/38.0.2125.102 Safari/537.36

Amazon Kindle Fire HDX 7
Mozilla/5.0 (Linux; Android 4.4.3; KFTHWI Build/KTU84M)
AppleWebKit/537.36 (KHTML, like Gecko) Silk/47.1.79 like
Chrome/47.0.2526.80 Safari/537.36

LG G Pad 7.0
Mozilla/5.0 (Linux; Android 5.0.2; LG-V410/V41020c Build/
LRX22G) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/34.0.1847.118 Safari/537.36

Go to User AgentsGo to contents33 UC

E-Readers
User-Agents

Device User-Agent

Amazon Kindle 4
Mozilla/5.0 (X11; U; Linux armv7l like Android; en-us)
AppleWebKit/531.2+ (KHTML, like Gecko) Version/5.0
Safari/533.2+ Kindle/3.0+

Amazon Kindle 3
Mozilla/5.0 (Linux; U; en-US) AppleWebKit/528.5+ (KHTML, like
Gecko, Safari/528.5+) Version/4.0 Kindle/3.0 (screen 600x800;
rotate)

Go to User AgentsGo to contents34 UC

Changing your
User-Agent

Looking to test mobile websites in
your desktop browser?

Or, maybe you need to test page
weight and load times in the mobile
environment?

These tasks are easily done by
changing the browser’s default User-
Agent header.

Click here to learn a few simple
methods for switching User-Agents
in desktop browsers.

https://deviceatlas.com/blog/how-to-change-user-agent-in-desktop-browser
https://deviceatlas.com/blog/how-to-change-user-agent-in-desktop-browser
https://deviceatlas.com/blog/how-to-change-user-agent-in-desktop-browser

Conclusion

The humble User-Agent header has
been around since the dawn of the
web and, despite recent landscape
changes, it continues to serve
us today.

At first glance, leveraging the
User-Agent seems like an easy way
to segment traffic and optimize your
content to increase engagement on
all devices. However, the tricky part
lies in handling a constantly evolving
set of User-Agents when new devices

are identified every single day.
This results in ineffective and quickly
obsolete analytics and reporting,
planning and optimizing, as well
as a difficulty in managing costs.

For companies operating at scale
that lack the resources to deal with
this in-house, it’s worth investing in a
high performance device intelligence
solution like DeviceAtlas.

35 Go to User AgentsGo to contents UC

DeviceAtlas is a high-speed,
high-performance, low-server
footprint device detection solution
used by some of the largest
companies in the online space.

The most common use-cases are:

•	 Optimizing UX and conversion
rates for all connected devices

•	 Improving web performance
•	 Targeting ads
•	 Analyzing web and app traffic

DeviceAtlas allows you to target any
of the 220 device properties to build
fine-grained content optimization
and detailed reports on web traffic.
Get started with a free trail to test
DeviceAtlas in your environment.

Start detecting all devices
accessing your content
across all environments

Get started

Learn more

Online: deviceatlas.com

or email: info@deviceatlas.com

https://deviceatlas.com/
https://deviceatlas.com/
mailto:info@deviceatlas.com

